Keynote: Efficient and Scalable Parallel Functional Programming Through Disentanglement
Researchers have argued for decades that functional programming simplifies parallel programming, in particular by helping programmers avoid difficult concurrency bugs arising from destructive in-place updates. However, parallel functional languages have historically underperformed in comparison to parallel programs written in lower-level languages. The difficulty is that functional programs have high demand for memory, and this demand only grows with parallelism, causing traditional parallel memory management techniques to buckle under the increased pressure.
Recent work has made progress on this problem by identifying a broadly applicable memory property called disentanglement. To exploit disentanglement for improved efficiency and scalability, we show how to partition memory into a tree of heaps, mirroring the dynamic nesting of parallel tasks. This design allows for task-local allocations and garbage collections to proceed independently and in parallel. The result is a provably efficient parallel memory manager.
These ideas have been incorporated into the MPL (“maple") compiler for Parallel ML, which offers practical efficiency and scalability for parallel functional programs. Our empirical evaluations show that, at scale (on 72 processors), MPL outperforms modern implementations of both functional and imperative languages, including Java and Go. Additionally, we show that MPL is competitive with low-level, memory-unsafe languages such as C++, in terms of both space and time.
Thu 15 SepDisplayed time zone: Belgrade, Bratislava, Budapest, Ljubljana, Prague change
09:00 - 10:30 | |||
09:00 50mKeynote | Keynote: Efficient and Scalable Parallel Functional Programming Through Disentanglement ML Sam Westrick Carnegie Mellon University | ||
09:50 20mTalk | Towards Algebraic Subtyping for Extensible Records ML Rodrigo Marques Universidade do Porto, Mário Florido Universidade do Porto, Pedro Vasconcelos LIACC, Universidade do Porto, Porto, Portugal | ||
10:10 20mTalk | The Ultimate Conditional SyntaxVirtual ML Lionel Parreaux The Hong Kong University of Science and Technology (HKUST) Pre-print File Attached |